数学中互质是指两个整数的公约数只有1,那么这两个数就是互质数。互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。
概念:
互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。 [1]
互质数具有以下定理:
(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;
(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;
(3)两个不同的质数,为互质数;
(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;
(5)任何相邻的两个数互质;
(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。
表达运用:
这里所说的“两个数”是指除0外的所有自然数。“公因数只有 1”,不能误说成“没有公因数。”三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。 两个整数(正整数)(N),除了1以外,没有其他公约数时,称这两个数为互质数.互质数的概率是6/π^2。互质的两个数相乘,所得的数不一定是合数。
因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数。如1与17互质,1×17=17,17不是合数。
©本文版权归作者所有,任何形式转载请联系我们:xiehuiyue@offercoming.com。