这句话是错的,无理数的平方不一定是无理数。比如根号2是无理数,但是根号2的平方等于2,这个2就是有理数。在数学中,无理数指的是实数范围内不能表示成两个整数之比的数,也称为无限不循环小数。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
无理数最早由毕达哥拉斯学派弟子希伯索斯发现。公元前500年,发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。
然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。
©本文版权归作者所有,任何形式转载请联系我们:xiehuiyue@offercoming.com。